Future FNAL Neutrino Scattering Experiments

Deborah Harris, Fermilab Kevin McFarland, Rochester

Fermilab Long Range Planning Neutrino Sub-Committee Open Meeting November 7th, 2003

Why?

 On our roadmap to understanding neutrino masses and mixings...

the physics of neutrino scattering will not set the course through the parameter space of possible future neutrino beams

- barring an enormous surprise, of course ©

Why? (cont'd)

- "Because it's there." A.k.a., exploration
 - the high rates required by oscillation experiments imply orders(!) of magnitude increases in flux at near detectors
- Because it's our bread and butter
 - Great thesis topics for students
 - Engineering for oscillation experiments
- Because it unifies communities
 - think of JLab with neutrinos
 - NP/HEP collaborations

What?

- Near detectors associated with oscillation experiments
 - direct measurements of fluxes, backgrounds and signal cross-sections
- QCD and Nucleon Structure
 - for its own sake
 - for cross-section model-building to for oscillation measurements
- More speculative topics
 - BSM Neutrino Interactions, Rare Processes, etc.

How?

- Current FNAL beams
 - MiniBooNE, NuMI
- Future Beams that could be built
 - Conventional beams
 - Proton driver, Main Injector, TeVatron FT(?)
 - Neutrino Factory Beams
- Planned and Future Detectors
 - MiniBooNE
 - MINOS Near Detector
 - MINERvA, FineSe, Off-Axis Near Detector
 - Light (H₂, D₂) targets, v Factory near detectors

Characterizing Beams

An Example of the Program:

A Roadmap for Studies of QCD and Nucleon Structure

Neutrino Cross-Sections

leutrino crosssections vs. Energy

- Quasi-Elastic / Elastic
 ν_μn→μ⁻p (x =1, W=M_p)
- Resonance
 ν_μp→μ⁻πp (low Q², W)
- Coherent $v_{\mu}N\rightarrow \mu^{-}\pi^{+}(\nu\pi^{0})N$
- Deep Inelastic
 ν_μN→μ⁻X (high Q², W)

Knowledge of exclusive final states, differential distributions in 1-10 GeV region is sketchy...

Example: Roadmap for QCD and Nucleon Structure

- Low Energies (few GeV or below)
 - (Quasi)elastic processes
 - Coherent pion production
 - Modeling the "Resonance Region"
- High Energies (DIS). N.b., need vbar
 - Nuclear Effects
 - Resolving puzzles in high x PDFs
 - Strange sea
- High intensities (neutrino factory?)
 - Polarized targets for flavor resolved spin

Elastic Scattering

$$\frac{d\sigma(vN \to vN)}{dQ^2} \approx G_A^2$$

$$G_A(Q^2) = -\tau_z g_A(Q^2) + G_A^s(Q^2)$$

$$\tau_z = +1(p), -1(n)$$

$$G_A^s(Q^2=0)=\Delta s$$

$$\frac{d\sigma(vp \to vp)}{d\sigma(vn \to \mu p)} \approx f(G_A^2)$$

- By measuring elastic scattering at Q²=0, correct for g_A using nuclear beta decay measurements, can extract ∆s
- Complimentary to other techniques for measuring strange quark spin

Quasielastic Scattering

- At low Q², interest is testing nuclear effects measured in charged leptons and measuring "m_△"
 - "engineering"
- At high Q², however, there is effectively no knowledge of form factors

G. 6. The Q^2 distribution for selected quasielastic its. The smooth line shows the best fit for $M_A = 1.07$

- Vector form factors not well modeled
- If vector case is a guide, dipole approximation is wrong
- Complimentary to JLab studies of elastic form factors

Coherent π^0 Production

$$\nu + A \rightarrow \nu + \pi^0 + A$$
.

$$\nu + A \rightarrow \nu + \pi^0 + A, \qquad \qquad \nu + A \rightarrow \mu^- + \pi^+ + A$$

- Adler's PCAC theorem: $\sigma(\nu A) \propto \sigma(\pi A)$ at Q²=0
- Important background for oscillation experiments
- Signature is outgoing π^0 or π^+ at 0°
- Strategy:
 - Measure CC process well to tune models
 - Test models with NC measurements

Resonance Production

- Models now in favor (Bodek-Yang) use Bloom-Gilman duality
- Relate resonance region to QPM limit
 - "DIS with wiggles", tested now only in charged lepton NC
 - Does Bodek-Yang work in detail in neutrino scattering

$$\begin{aligned}
\nu_{\mu} p &\to \mu^{-} \Delta^{++} \to \mu^{-} p \pi^{+} \\
\nu_{\mu} n &\to \mu^{-} \Delta^{+} \to \mu^{-} n \pi^{+} \\
\nu_{\mu} n &\to \mu^{-} \Delta^{+} \to \mu^{-} p \pi^{0} \\
\nu_{\mu} p &\to \nu_{\mu} \Delta^{+} \to \nu_{\mu} p \pi^{0}
\end{aligned}$$

Also relevant background for oscillation experiments

Final State Effects

- Oscillation "engineering"
 - at low energy, visible calorimeter energy is sensitive to final state
 - important for MINOS,
 - NUMI OA

 How many pions produced?

 How many absorbed?

 Impact on MINIOS visible
 - Impact on MINOS visible energy illustrated at right

PDFs in Deep Inelastic Scattering

- High x parton distribution functions
 - Need v and vbar to separate flavors

- Strange sea
 - At higher energies, neutrino CC charm production is best probe of strange sea
 - e.g., NuTeV/CCFR dimuons

Nuclear Effects in DIS

- Well measured effects in charged-lepton DIS
 - Is the same in neutrino DIS?
- Separate sea and valence Anti-shadowing with v and vbar running shadowing Fermi 3 4 5 6 7 motion 1.0 $F_2(X)/F_2(D)$ 6.0 NMC Ca/D SLAC E87 Fe/D 0.8 SLAC E139 Fe/D **EMC** effect E665 Ca/D Parameterization Error in parameterization 0.001

X

H₂ and D₂ Targets

- Need High Intensity (high energy beams)
- Need v and vbar
- New Physics capabilities
 - "clean" measurement of nucleon PDFs
 - e.g., measurements at high x would not have uncertainty from Fermi smearing
 - alternatively, improved "lever arm" for nuclear effects
 - isospin Violation in PDFs could be measured
 - explicit flavor separation
 - experimentally viable explanation for NuTeV $\sin^2\theta_W$

Polarized H₂ and D₂ **Targets**

- Need very intense beam here! (v factory, High E)
- Flavor-dependent Spin Structure Functions
 - •Isospin violation?
 - Spin contribution from strange quarks
 - Complementary to studies from NP experiments, e.g., HERMES

Some Other Excerpts of Possible Physics

Rare Processes: v-e scattering

- Powerful electroweak test
 - No QCD uncertainties
 - Point-like target
 - Well-predicted σ

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \frac{4}{3} \sin^4 \theta_W \right)$$

 Above 11 GeV, can normalize to CC process

$$\sigma_{TOT} = \frac{G_F^2(s - m_{\mu}^2)}{\pi}$$

 Need detector with lots of background rejection for single-electron signal

BSM Physics, Examples

- Large neutrino magnetic moment
 - do high fluxes at high energy allow improvements over what can do at reactor (this is not clear to me, although it's been discussed)
- Spin-flavor precession
 - rare SB appearance processes (any comprehensive studies?)
- [Insert your favorite idea here]

Beamlines and Detectors

FNAL Booster Neutrino Beamline

FINeSE at FNAL Booster

The Beam

- New hall 100m from Target on-axis
- $< E_{v} > \sim 0.9 \text{ GeV}$
- 3×10⁴/ton/3E20 POT

(B. Fleming, NP02 talk)

NuMI Beamline at Fermilab

Example: Rates at NUMI Near Hall

- If 2.5 x 10²⁰ pot per year of NuMI running...
- Low E-configuration:
 - $E_{peak} = 3.0 \text{ GeV}$, $\langle E_{v} \rangle = 10.2 \text{ GeV}$, rate = 2E5 events/ton year.
- Med E-configuration:
 - $E_{peak} = 7.0 \text{ GeV}$, $\langle E_{v} \rangle = 8.5 \text{ GeV}$, rate = 7E5 events/ton year
- High E-configuration:
 - E_{peak} = 12.0 GeV, $\langle E_{v} \rangle$ = 13.5 GeV, rate = 16E5 events/ton year

Easy to go 5-15 meters Off-Axis

- At NUMI, detector can be moved around to vary energy without new tunneling
- Access to lower energy beams. May be important for low energy cross-sections.

Not Your Grandfather's Neutrino Detector

- Fluxes are high so masses can be low!
- Identification and separation of exclusive final states
 - Quasi-elastic $\nu_{\mu}n\rightarrow \mu^{-}p$, $\nu_{e}n\rightarrow e^{-}p$ observe recoil protons
 - Implies nearly fully active wean ourselves from sampling detectors
 - Single π^0 , π^{\pm} final states reconstruct π^0
 - Multi-particle final-state resonances
- Reasonable EM and hadronic calorimetry for DIS
 - Accurate measurements of x_{Bi} , Q^2 and W.
- Multiple targets of different nuclei

Liquid Argon TPC at FNAL?

Fully-Active Detector: Extruded Scintillator

Neutrino Detectors Unbound

- 1 GeV coherently produced π⁰
 - challenging final state to reconstruct
 - fully-active scintillator strip detector gives excellent energy, position resolution

Neutrino Detectors Unbound (cont'd)

Single proton, 200 MeV K.E. from

$$\nu_{\mu}p \rightarrow \nu_{\mu}p$$

High Rate Physics at v Factory

Flux (arb units)

3000	— 10 G	eVμ		- Andrew	46.74
2500	20 Ge	eV μ		and and a second	
2000	50 Ge	eV μ	And the second	a see	
1500		1			
1000	1	1			
500	N			ν_{ν}	
0	10	20	30	40	-

Target	Thickness	Evts/10 ²⁰ μ	
Liquid H ₂	100cm	12.1M	
Liquid D ₂	100cm	29.0M	
Solid HD	50cm	9.3M	
С	5.3cm	20.7M	
Fe	2.3cm	31.6M	

Events for a 40cm Radius target... Surround with low mass Calorimetry...

Summary

- Important Physics from Low to High Energies
 - We saw, for example, how a program of QCD studies could develop with time
- Opportunistic: FNAL v beams provide a new facility. We should exploit it.
 - "JLab" of v. Medium energy users come to FNAL!
 - Intersection of particle and nuclear physics
- Is there new physics to be found?
- Oscillation Physics needs these measurements

A Possible Recommendation

- "Existing and planned neutrino beams at Fermilab provide unprecedented new opportunities in high rate neutrino physics.
- A modest investment in new near-source detectors will be repaid handsomely in new physics from FNAL and new physicists attracted to FNAL.
- We encourage cooperation between the HEP and NP communities in planning the exploitation of this resource."